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LE'ITER TO THE EDITOR 

Modulated Taylor-Couette flow as a dynamical system 

Jayanta K Bhattacharjee, Kalyan Banerjee and Krishna Kumar 
Department of Physics, Indian Institute of Technology, Kanpur 208016, India 

Received 25 March 1986 

Abstract. A Lorenz-like truncation of the full hydrodynamic equations is used to study 
the onset of first instability of modulated Taylor-Couette flow. The linear stability analysis 
is carried out on the lowest order (2 x 2) non-autonomous dynamical system. The use of 
good wavefunctions for the truncation yields qualitative agreement with exact hydro- 
dynamics even at this low order of stability analysis. 

The effect of modulation of control parameters on the onset of hydrodynamic instability 
has attracted considerable attention lately because of the sophistication of experimental 
techniques. The onset of thermally driven instability in the Rayleigh-Binard geometry 
has been extensively studied. The full hydrodynamic equations (Venezian 1969, Rosen- 
blat and Tanaka 1971), a low-order truncation thereof (Ahlers et a1 1985) and amplitude 
equations (Ahlers et al 1985) have been studied and the results are in excellent 
agreement with each other. The full hydrodynamic equations for the modulated 
Taylor-Couette flow have been studied analytically by Hall (1975) and numerically 
by Riley and Laurence (1976). While Hall (1975) finds destabilisation of flow due to 
modulation for all frequencies, Riley and Laurence (1976) notice that, for high ampli- 
tudes of modulation, the effect of modulation is to destabilise the flow for low 
frequencies and stabilise it for high frequencies. For low amplitudes, Riley and 
Laurence (1976) do not notice the stabilisation at high frequencies perhaps because 
the effect at high frequencies is very small (it is barely within the range of numerical 
accuracy for moderate amplitudes and beyond it for smaller amplitudes). The experi- 
ments of Donnelly (1964) show stabilisation at all frequencies, while the more accurate 
experiment of Thompson (1968) shows a destabilisation at low frequencies and a 
stabilisation in the higher range. 

Lately there has been some effort to introduce a truncated model for the Taylor- 
Couette problem similar to the Lorenz model for Rayleigh-BCnard geometry to under- 
stand the modulation effects. Kuhlmann (1985) used a truncated model for the 
modulated Taylor-Couette system using idealised boundary conditions and found that 
the simplest truncation yields stabilisation at all frequencies. To find destabilisation 
one has to include more modes. A truncation of the unmodulated system using the 
proper rigid boundary conditions has been carried out by Hshieh and Chen (1984). 
We carry out a similar truncation for the modulated system and find that the lowest 
order (two modes for the linearised system) truncation leads to destabilisation at low 
frequencies. At high frequencies the model shows stabilisation. This is contrary to 
Hall and we believe the result is not an artefact of the truncation. 

0305-4410/86/ 140835 + 05$02.50 @ 1986 The Institute of Physics L835 



L836 Letter to the Editor 

The hydrodynamic equations for the linear stability analysis of modulated Taylor- 
Couette flow in the narrow gap approximation are 

sinh a d  ( 1  - z )  i w t  

sinh a d  ( D 2 - a 2 ) ( D 2 - a 2 - 8 / 8 ~ ) u =  U e ) ( l a )  

cosh a d ( 1  - z )  eiw' 
ad 

( D 2 - ~ ' - 8 / d ~ ) ~ = - T ~  

where U is the radial velocity, U the angular velocity, z = r / d ,  where r is the radial 
coordinate and d the gap, a the dimensionless wavenumber in the z direction, T the 
Taylor number, a = (io/ Y) '" ,  T the time in units of d 2 /  v and D = d/dz. Axisymmetric 
flow is assumed. The boundary conditions are U = 0 = U = Du at z = 0 and z = 1. For 
E = 0 (the unmodulated system), it has been shown by Chandrasekhar (1961) that the 
solutions 

uo = sin 7rz ( 2 a )  

and 

uo = A sinh az + B cosh az + C z  sinh az + Dz cosh az  

( 1  - z )  sin T Z  47r 
cos 7Tz - + 

( 7 2 + a 2 ) 2  (7r2+a2)3 

(the constants A, B, C and D can be found in Chandrasekhar) yield the critical Taylor 
number T, to within one per cent of the exact numerical answer (T ,  = 3430, a = 3.1 1 ) .  
We use the functions u o ( z )  and uo(z )  for the two-mode truncation of the hydrodynamic 
equations and set 

u ( z ,  t )  = x ( t ) u o ( z )  ( 3 a )  

U(Z, f )  =.Y(t)uo(z).  ( 3 b )  
Inserting the above forms in equations ( l a )  and ( l b ) ,  and integrating over z after 
multiplying by uo(z) on either side, we obtain (Hshieh and Chen 1984, Kuhlmann 1985) 

i= - A l 1 x + A l 2 y  

j = - B  1lY + B12x 

where 

A l l  = T , u ~ / ~ ( ~ T ~ + u ~ ) ~  

A12 = Al l  + T,a2(r2+a2)-2&Re G(o) ei"" 

Bl,=.rr2+a2 

and 
- 1  

B , , = ( r r 2 + a 2 ) ( T / T , ) + ( 7 r 2 + a 2 ) ( T / 2 T C ) ~  Re F ( w )  eiut(  lo1 uo(z )uo ( z )  dr )  . 

Note that 

( 5 d )  
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a is the critical wavenumber which is equal to 3.11, 

sinh a d ( 1 - z )  
sin TZ dz 

and 

ad 
cosh ad ( 1  - z) sin T Z  dz. 

Defining r = T/ T,, rescaling time by the factor T'+ a' and introducing 
- I  

C =  .+(U)( 21,' uo(z)uo(z) dz) = EY ( 9 )  

a = T , u ~ / ~ ( T ' + u ~ ) ~  (10) 

we arrive at the system of equations 

x = -a ( x  - y )  + Re( .$ei"')y 

j = - y + rx + Re( ;eiw' ) rx 

where 

7r' + a' G ( w )  
p=2a-- 

T,a' F ( w ) '  

We note that evaluation of G ( w )  and F ( w )  in the limiting cases of w = 0 and w >> 1 
leads to 

p ( w  + 0) + a 

p ( w  >> 1 )  + 0 . 0 3 ~ .  

(13a) 

(13b)  

For E = 0 (no modulation), equations ( 1  1 a )  and ( 1  16) show that the onset of instability 
occurs at r = r, = 1 .  The problem is to determine the shift in  the critical value of r in  
the presence of modulation ( E  Z 0). 

We proceed perturbatively by expanding 

x = x o + s x , + E 2 X 2 +  . . .  (14a) 

y=yo+Ey,+E'y2+ . . .  (14b) 

rc = r,+ ~ r ,  + E 2 r 2 + .  . .. (14c) 

Inserting equations ( 1 4 4 4  1 4 4  into equations ( l l a )  and ( 1  1 b )  and equating terms 
of the same order in E on either side, we obtain 

L( ;;) = 0 

L( ;:) = Re( 
e i w '  

r l x o +  r,x,y el"' 

YBY 1 elw' 
rZxo + r l x l  + roxl y e'"' + r , x , y  el"' 
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with the matrix operator L given by 

Noting that the unmodulated instability is stationary (i.e. x,, and yo are time indepen- 
dent) and that the solvability condition (the inhomogeneous term must be orthogonal 
to the solution of the homogeneous equation) needs to be applied to equations (15b) 
and ( 1 5 4 ,  we arrive at r, = 0 and 

leading to 

for real p. 
We note that if p = 0 and a = a, we recover the result for the Rayleigh-Binard 

convection which is exactly as it should be. The correction for w + 0, after making 
use of equations (9) and (13a), is given by 

(a - 1)2 
2(a + 1 ) 2  

r 2 =  - = -0.07 

Figure 1. The first non-vanishing correction to the critical Taylor number due to modulation, 
normalised to its unmodulated value, as a function of frequency w in units of v / d 2 .  Note 
that for o > 80, the correction is positive (equation (18)) but the magnitude, being very 
small, is not visible on the scale of the drawing. 



Letter to the Editor L839 

in excellent agreement with Hall. For very high frequencies the effect disappears 
asymptotically as 

as it does in exact hydrodynamics. 
The sign of this asymptotic term, however, is in disagreement with Hall. To get 

the full course of the function, we evaluate the real and imaginary parts of p numerically 
from equation (12) and then make use of equation (17). This yields the curve shown 
in figure 1. We note that the crossing takes place at rather high frequency. The 
magnitude of the effect being extremely small in this range, numerical calculations are 
likely to fail. The disagreement with Hall (1975) is more serious. Could it be that the 
approximations uo(z)  and vo (z )  are too drastic in the high frequency regime? While 
more accurate wavefunctions are certainly desirable, we note that for very high 
frequencies the modulation effect in equation ( l a )  is small compared to that in equation 
(1 b) .  This makes the situation essentially similar to the modulated Rayleigh-BCnard 
problem where stabilisation is known to occur at all frequencies. 
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